Chapter 7 Plotting diversity

Some visualisations of alpha and beta diversity.

7.1 Introduction

This chapter introduces you to a basic workflow for plotting alpha and beta diversity using phyloseq and ggplot. It provides examples for loading the phyloseq object from a previously saved .rds file, then how to calculate and include alpha diversity metrics into the sample_data of the phyloseq object, and finally how to plot some of these metrics, individually or combined.

Furthermore, beta diversity, i.e. four different type of ordinations are plotted. The examples, include non-metric dimensional scaling on Bray-Curtis dissimilaries, Principal Component Analysis (Aitchison distance), Redundancy Analysis ( Aitchison) and a Principal Coordinate Analysis on unweighted uniFrac distances.

The stats behind the individual metrics are not discussed. If you want to learn more about the various options to analyse your amplicon-derived diversity, perhaps start here: https://sites.google.com/site/mb3gustame/home, the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME). This is one of many other useful links and resources. Some others are listed in chapter 3 under “Workflows from other lab groups”.

As mentioned in Chapter 3, prior to establishing alpha diversity indices, as well as Bray-Curtis dissimilarities, we will stick to rarefying sequences to a specific library size (library size = sum of sequence counts of a sample) to normalise the data and prevent bias due to library size. Usually, this is done using the smallest library size of all samples. If you want to learn more about rarefying - this paper explains the process: Enhancing diversity analysis by repeatedly rarefying next generation sequencing data describing microbial communities (Cameron et al. (2021)).
We will follow the recommendations from the authors of this paper to resample without replacement.

Note that rarefying is generally not recommended for statistical inferences in differential abundance analyses due to the loss of statistical power. Learn why here: Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible (McMurdie and Holmes (2014)).

Other normalisation methods (see Chapter 3) are also possible and it is up to you, the analyst, to understand and decide on the appropriate methods.

My preference is to use centred-log ratios (Aitchison distances). Aitchison distances are used in the workflow below for the PCA and RDA. The compositional approach and centred log-ratios are further discussed in the paper Microbiome Datasets Are Compositional: And This Is Not Optional (Gloor et al. (2017)).
In fact, comparing the results after applying different types of normalisation methods, dissimilarities or distances may complement your analysis and help in interpretation of data.

7.1.1 Required files

  • A phyloseq object; either read in from a pre-saved .rds file or created as described in chapter 6 under “Import qiime-files and create a phyloseq object”.
  • If you dont have your own data you can download the pre-saved .rds object from this Chapter and follow the below steps: ps_ProjectX_2022July.

Time to get started…

7.2 Workflow

7.2.1 Packages

Install the following packages if not already.

# BiocManager::install("microbiome") If needed
library(phyloseq)
library(ggpubr)       # a handy helper package for ggplots
library(tidyverse)
theme_set(theme_bw())  # setting the theme for ggplots
library(vegan)
library(microbiome)


7.2.2 Load phyloseq object

For detail on how to create a phyloseq object please see chapter 6.

# reading in a previously saved phyloseq object
ps <- readRDS('ps_ProjectX_2022July')
ps  # get an overview of number of taxa and samples contained in the phyloseq object
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 4218 taxa and 51 samples ]
## sample_data() Sample Data:       [ 51 samples by 15 sample variables ]
## tax_table()   Taxonomy Table:    [ 4218 taxa by 7 taxonomic ranks ]
## phy_tree()    Phylogenetic Tree: [ 4218 tips and 4217 internal nodes ]


Check the metadata contained in the phyloseq object. This is the original metadata from the public repository where the FastQ files were downloaded from (Sequence Read Archives).

There are 15 columns containing some character (chr), factor or integer (int) variables.

metadf <- data.frame(sample_data(ps))
str(metadf)
## 'data.frame':    51 obs. of  15 variables:
##  $ Assay.Type     : chr  "AMPLICON" "AMPLICON" "AMPLICON" "AMPLICON" ...
##  $ Bases          : int  13254234 24196788 15758554 20048406 37634632 43555904 35107436 13888140 23172184 35065898 ...
##  $ BioProject     : chr  "PRJNA645373" "PRJNA645373" "PRJNA645373" "PRJNA645373" ...
##  $ Bytes          : int  9235913 16404070 10758456 13009806 24207581 27963491 22585685 9388862 15125835 22520074 ...
##  $ Organism       : chr  "anaerobic digester metagenome" "anaerobic digester metagenome" "anaerobic digester metagenome" "anaerobic digester metagenome" ...
##  $ collection_date: chr  "30/11/16" "9/3/16" "17/3/16" "5/12/16" ...
##  $ loc            : chr  "Ejby Moelle" "Soeholt" "Esbjerg Vest" "Viborg" ...
##  $ Reactor        : Factor w/ 10 levels "1A","1B","2B",..: 4 4 6 7 7 5 5 5 4 4 ...
##  $ Type           : chr  NA NA NA "DS" ...
##  $ Purpose        : chr  "reactorfoampotentials" "reactorfoampotentials" "reactorfoampotentials" "foamnofoamcomparison" ...
##  $ Experiment     : chr  "SRX8715180" "SRX8715169" "SRX8715158" "SRX8715151" ...
##  $ lat_lon        : chr  "55.398077 N 10.415041 E" "56.175302 N 9.582588 E" "55.488235 N 8.430655 E" "56.425367 N 9.4527943 E" ...
##  $ ReleaseDate    : chr  "2021-01-01T00:00:00Z" "2021-01-01T00:00:00Z" "2021-01-01T00:00:00Z" "2021-01-01T00:00:00Z" ...
##  $ Sample.Name    : chr  "16SAMP-17236" "16SAMP-17231" "16SAMP-17233" "MQ170915-14" ...
##  $ Location       : Factor w/ 12 levels "Avedoere","Damhusaaen",..: 4 11 5 12 12 12 12 2 11 11 ...


7.2.3 Pre-filter, rarefy and calculate diversity

Now the diversity indices can be calculated and added to the metadata of the phyloseq object for plotting. First, the abundances are pre-filtered (as shown in the previous chapter), then the ASV abundances are randomly resampled with phyloseq::rarefy_even_depth, such that all samples have the same number of ASVs.
The diversity indices are then calculated with phyloseq::estimate_richness based on these evenly resampled abundances. The dataframe that is created containing the range of indices is then added to the existing metadata of the phyloseq for plotting.

# some additional quality filtering - repeating steps from previous chapter. 
  
ps.flt = prune_taxa(taxa_sums(ps) >= 5, ps) #minimum reads per feature 
ps.flt  = subset_taxa(ps.flt , !is.na(Phylum) & !Phylum %in% c(""))
ps.flt <- ps.flt %>%
  subset_taxa(Kingdom == "Bacteria" & Family  != "Mitochondria" & Class   != "Chloroplast")
ps.flt 
## phyloseq-class experiment-level object
## otu_table()   OTU Table:         [ 3853 taxa and 51 samples ]
## sample_data() Sample Data:       [ 51 samples by 15 sample variables ]
## tax_table()   Taxonomy Table:    [ 3853 taxa by 7 taxonomic ranks ]
## phy_tree()    Phylogenetic Tree: [ 3853 tips and 3852 internal nodes ]
# confirming minimum sample size
min(colSums(otu_table(ps.flt)))
## [1] 9770
# quantile summary of sample sizes
quantile(colSums(otu_table(ps.flt)))
##      0%     25%     50%     75%    100% 
##  9770.0 16278.5 23035.0 34173.0 42345.0
# rarefy - required before measuring alpha diversity. 
# This step is to create an abundance table, where the all samples are randomly 
# resamples such that all samples have the same number of ASVs.  
# It removes any bias but number of re-samples is based on the sample with 
# smallest number of ASVs so one has to check and filter beforehand in case 
# there are samples with very different number of ASVs. I am generally going 
# by a 10x rule. If the lowest number of ASVs is 10x lower than the sample with
# highest number of ASVs, then I keep that sample in for alpha diversity assessments.  

ps_rare <- phyloseq::rarefy_even_depth(ps.flt, 
    sample.size = min(colSums(otu_table(ps.flt))),  
    rngseed = TRUE, 
    replace = FALSE, #without replacement
    trimOTUs = TRUE)

# check rarefied phyloseq object
# ps_rare (not run)

# phyloseq-class experiment-level object
# otu_table()   OTU Table:         [ 3801 taxa and 51 samples ]
# sample_data() Sample Data:       [ 51 samples by 15 sample variables ]
# tax_table()   Taxonomy Table:    [ 3801 taxa by 7 taxonomic ranks ]
 #phy_tree()    Phylogenetic Tree: [ 3801 tips and 3800 internal nodes ]

# Create diversity indices
div.df <- phyloseq::estimate_richness(ps_rare)
# add sample names
div.df$`#SampleID` <- phyloseq::sample_names(ps.flt)
# add diversity indices to phyloseq object
metadf <- data.frame(sample_data(ps.flt))  # export metadata first
metadf <- metadf %>% 
  rownames_to_column("#SampleID") %>%
  left_join(div.df, by = "#SampleID") %>% 
  column_to_rownames("#SampleID") # add the diversity indices (columns) to the metadata
# add pilou evenness (see calculation in "Numerical Ecology with R - Bocard et al")
metadf$pielou_ev <- div.df$Shannon/log(div.df$Observed)
# replace metadata with temp meta.df which includes the diversity indices
ps.flt@sam_data <- sample_data(metadf)  
ps_rare@sam_data <- sample_data(metadf)  
# this replaced the old metadata with new metadata that includes the diversity 
# indices for this phyloseq object 
str(data.frame(sample_data(ps.flt)))
## 'data.frame':    51 obs. of  25 variables:
##  $ Assay.Type     : chr  "AMPLICON" "AMPLICON" "AMPLICON" "AMPLICON" ...
##  $ Bases          : int  13254234 24196788 15758554 20048406 37634632 43555904 35107436 13888140 23172184 35065898 ...
##  $ BioProject     : chr  "PRJNA645373" "PRJNA645373" "PRJNA645373" "PRJNA645373" ...
##  $ Bytes          : int  9235913 16404070 10758456 13009806 24207581 27963491 22585685 9388862 15125835 22520074 ...
##  $ Organism       : chr  "anaerobic digester metagenome" "anaerobic digester metagenome" "anaerobic digester metagenome" "anaerobic digester metagenome" ...
##  $ collection_date: chr  "30/11/16" "9/3/16" "17/3/16" "5/12/16" ...
##  $ loc            : chr  "Ejby Moelle" "Soeholt" "Esbjerg Vest" "Viborg" ...
##  $ Reactor        : Factor w/ 10 levels "1A","1B","2B",..: 4 4 6 7 7 5 5 5 4 4 ...
##  $ Type           : chr  NA NA NA "DS" ...
##  $ Purpose        : chr  "reactorfoampotentials" "reactorfoampotentials" "reactorfoampotentials" "foamnofoamcomparison" ...
##  $ Experiment     : chr  "SRX8715180" "SRX8715169" "SRX8715158" "SRX8715151" ...
##  $ lat_lon        : chr  "55.398077 N 10.415041 E" "56.175302 N 9.582588 E" "55.488235 N 8.430655 E" "56.425367 N 9.4527943 E" ...
##  $ ReleaseDate    : chr  "2021-01-01T00:00:00Z" "2021-01-01T00:00:00Z" "2021-01-01T00:00:00Z" "2021-01-01T00:00:00Z" ...
##  $ Sample.Name    : chr  "16SAMP-17236" "16SAMP-17231" "16SAMP-17233" "MQ170915-14" ...
##  $ Location       : Factor w/ 12 levels "Avedoere","Damhusaaen",..: 4 11 5 12 12 12 12 2 11 11 ...
##  $ Observed       : num  161 354 247 265 389 454 406 304 278 371 ...
##  $ Chao1          : num  161 356 247 266 395 ...
##  $ se.chao1       : num  0 2.2689 0.0832 1.0272 3.914 ...
##  $ ACE            : num  161 357 247 266 395 ...
##  $ se.ACE         : num  4.6 9.28 7.43 7.72 9.83 ...
##  $ Shannon        : num  4.24 4.84 4.74 4.78 5.03 ...
##  $ Simpson        : num  0.966 0.973 0.982 0.983 0.986 ...
##  $ InvSimpson     : num  29.6 37.7 56.8 57.8 70.6 ...
##  $ Fisher         : num  27.4 72 46.1 50.2 81 ...
##  $ pielou_ev      : num  0.834 0.825 0.861 0.857 0.843 ...

7.2.4 Colors

# You can check Hex codes with help of https://htmlcolorcodes.com/

cols <- c("#F9E79F", "#FDEBD0", "#F6DDCC",  "#E5E8E8", "#CCD1D1", "#AAB7B8", 
          "#707B7C", "#566573","#82E0AA", "#641E16", "#8E44AD", "#E74C3C")

# you can also name each colour according to your treatment. 
# This will help ggplot to associated the same colour for each treatment across
# different ggplots. For example, if we want to show different colour by location 
# in this dataset: 
names(cols)  <- unique((data.frame(sample_data(ps.flt)))$Location)
cols
##   Ejby Moelle       Soeholt  Esbjerg Vest        Viborg    Damhusaaen 
##     "#F9E79F"     "#FDEBD0"     "#F6DDCC"     "#E5E8E8"     "#CCD1D1" 
##      Slagelse       Randers Mariagerfjord       Fornaes          Egaa 
##     "#AAB7B8"     "#707B7C"     "#566573"     "#82E0AA"     "#641E16" 
##      Avedoere     Hjoerring 
##     "#8E44AD"     "#E74C3C"

7.2.5 Richness

p1 <- data.frame(phyloseq::sample_data(ps.flt)) %>%
  ggpubr::ggboxplot(., x = "Location", 
                    y = "Observed", 
                    fill = "Location", 
                    ylab = "Richness", 
                    xlab = "Location", 
                    palette = cols) +
    theme_bw() +
    theme( panel.grid.major = element_blank(), panel.grid.minor = element_blank() ) +
    geom_jitter(width = 0.1) +
   theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
#    theme(axis.title.x=element_blank(),  # Options
#        axis.text.x=element_blank(),
#        axis.ticks.x=element_blank()) +
  ggpubr::stat_compare_means(method = "kruskal",label.x = 2)
p1

7.2.6 Shannon

# Shannon
p2 <- data.frame(phyloseq::sample_data(ps.flt)) %>%
  ggpubr::ggboxplot(., x = "Location", 
                    y = "Shannon", 
                    fill = "Location", 
                    ylab = "Shannon diversity (H)", 
                    xlab = "Location", 
                    palette = cols) +
    theme_bw() +
    theme( panel.grid.major = element_blank(), panel.grid.minor = element_blank() ) +
    geom_jitter(width = 0.1) +
   theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
#    theme(axis.title.x=element_blank(),  # Options
#        axis.text.x=element_blank(),
#        axis.ticks.x=element_blank()) +
  ggpubr::stat_compare_means(method = "kruskal",label.x = 2)
p2

7.2.7 Pielou’s evenness

# Pielou
p3 <- data.frame(phyloseq::sample_data(ps.flt)) %>%
  ggpubr::ggboxplot(., x = "Location", 
                    y = "pielou_ev", 
                    fill = "Location", 
                    ylab = "Pielou Evenness (J)", 
                    xlab = "Location", 
                    palette = cols) +
    theme_bw() +
    theme( panel.grid.major = element_blank(), panel.grid.minor = element_blank() ) +
    geom_jitter(width = 0.1) +
   theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
#    theme(axis.title.x=element_blank(),  # Options
#        axis.text.x=element_blank(),
#        axis.ticks.x=element_blank()) +
  ggpubr::stat_compare_means(method = "kruskal",label.x = 2)
p3

7.2.8 Combined plotting

#pdf(NULL)
g1 <- ggpubr::ggarrange(p1, p2, p3, common.legend = TRUE, nrow = 1, legend = 'top')
#x = dev.off()
g1


7.2.9 NMDS

physeqNMDS <-  ps_rare  # We are using the rarefied abundances as explained in the intro 

#ordination
ordination <- phyloseq::ordinate(physeqNMDS  , "NMDS", distance = 'bray') 
# using Bray-Curtis dissimilarities here. 

label <- round(ordination$stress,3) # stress label
#plotting ordination
NMDSplot <- phyloseq::plot_ordination(physeqNMDS, 
                  ordination , 
                  color = "Location", 
                  #shape = "Reactor",    
                  # option to add shapes as data symbols
                  title = "NMDS") +
     geom_point(aes(size = pielou_ev), alpha = 0.75) +   
# shape size in proportion to Pielou Evenness, also make transparent 
     annotate(geom = 'text', label = paste("Bray-Curtis, Stress = ", label), 
             x = -Inf, y = -Inf, hjust = -0.05, vjust = -1, size = 3)  +
     scale_color_manual(values = cols) + 
# increase symbol size in legend and set order of legend items
     guides(color = guide_legend(override.aes = list(size = 3), order = 1), 
            size = guide_legend(title ="Pielou Evenness") ) # change the legend title for `size`.

NMDSplot

7.2.10 PCA

physeqPCA <-  ps.flt  # just to keep it separate.

# normalisation and transform using the microbiome package
# I chose a centred log-ratio transform and a principal component analysis in a euclidean space.
physeqPCA <- microbiome::transform(physeqPCA, "clr")

#ordination
ordination <- phyloseq::ordinate(physeqPCA , "RDA") # useing the centred-log transformed abundances

#plotting ordination
PCAplot <- phyloseq::plot_ordination(physeqPCA, 
                                      ordination , 
                                      color = "Location", 
                                      #shape = "Reactor", 
                                     # option to add shapes as data symbols
                                      title = "Principal Component Analysis") +
     geom_point(aes(size = pielou_ev)) +    # # shape size in proportion to Pielou Evenness
    annotate(geom = 'text', label = paste("Aitchison distances"), 
             x = -Inf, y = -Inf, hjust = -0.05, vjust = -1, size = 3)  + 
    scale_color_manual(values = cols) + 
# increase symbol size in legend and set order of legend items
# change the legend title for `size`.
     guides(color = guide_legend(override.aes = list(size = 3), order = 1), 
            size = guide_legend(title ="Pielou Evenness") ) 

PCAplot


7.2.11 RDA

# PERCENT FILTERVALUE FOR ALL RDAs
pcnt <- 0.25
# FORMULA FOR ALL RDAs
form <- formula(~ Location)
# labels for arrows
# pos for arrows
xarw <- 5
yarw <- 5
# arrow length map
larw <- 1.5
# arrow length map for chromosol rda
larwch <- 1
# fixed width of x axis
xaxis = c(-6.75, 6.5)
# position of annotation
textposx = c(-4.4)
# arrow color
arrowcolor <- "grey13"


physeqPCA <- ps.flt # excluding Heat, H2O2, reference and blank

# normalisation and transform
physeqPCA <- microbiome::transform(physeqPCA, "clr")

#ordination
ordination <- phyloseq::ordinate(physeqPCA, "RDA", "bray", formula = form )

RDAplot <- phyloseq::plot_ordination(physeqPCA, ordination , 
                                color = "Location")  +
  geom_hline(yintercept=0, linetype="dashed", color = "gray") +
  geom_vline(xintercept=0, linetype="dashed", color = "gray") +    # shape size reflective of Pielou  
     annotate(geom = 'text', label = paste("Aitchison distances"), 
             x = -Inf, y = -Inf, hjust = -0.05, vjust = -1, size = 3) +
  geom_point(aes(size = pielou_ev)) +        # shape size in proportion to Pielou Evenness
  #scale_colour_gradient(low = colourlow, high = colourhigh) +
  ggtitle("RDA Abundances (clr) ~ Location") +
  scale_color_manual(values = cols) + 
# increase symbol size in legend and set order of legend items
# change the legend title for `size`.
     guides(color = guide_legend(override.aes = list(size = 3), order = 1), 
            size = guide_legend(title ="Pielou Evenness") ) 



# Now add the environmental variables as arrows to either of these p1 or p2
arrowmat <- vegan::scores(ordination, display = "bp")
arrowmat <- data.frame(arrowmat)
#rownames(arrowmat) <- arrowlabel
# Add labels, make a data.frame
arrowdf <- data.frame(labels = rownames(arrowmat), arrowmat)
arrowdf$labels <- arrowdf$labels %>% gsub("Location", "", .) # remove the string "Location" from the labels. 
# Define the arrow aesthetic mapping
arrow_map <- aes(xend = larw * RDA1,
                 yend = larw * RDA2,
                 x = 0,
                 y = 0,
                 shape = NULL,
                 color = NULL,
                 label = labels)

label_map <- aes(x = xarw * RDA1,
                 y = yarw * RDA2,
                 shape = NULL,
                 color = NULL,
                 label = labels)

arrowhead = arrow(length = unit(0.02, "npc"))

RDAplot <-RDAplot +
  geom_segment(
    mapping = arrow_map,
    size = .5,
    data = arrowdf,
    color = arrowcolor,
    arrow = arrowhead)  +
  geom_text(
   mapping = label_map,
  size = 4,
  data = arrowdf,
  show.legend = FALSE)


RDAplot

# save figure for publication
# ggsave("RDA.png", height=6, width=7.5, units='in', dpi=600)
#knitr::include_graphics("./RDA.png")


7.2.12 Unweighted uniFrac

UniFrac distances are derived from phylogenetic distances between ASVs, which means that a phylogenetic tree needs to be included into the phyloseq object.

physeqPcOA <-  ps.flt  # just to keep it separate.

#ordination
ordination <- phyloseq::ordinate(physeqPcOA  , 
                                 "PCoA", 
                                 distance = 'unifrac') # using just presence and absence (unweighted) dissimilarities here. 

#plotting ordination
PCOAplot <- phyloseq::plot_ordination(physeqPcOA, 
                                      ordination , 
                                      color = "Location", 
                                      #shape = "Reactor",    
                                      # option to add shapes to data symbols
                                      title = "Principal Coordinate Analysis") +
     geom_point(aes(size = pielou_ev)) +    # shape size reflective of Pielou  
     annotate(geom = 'text', label = paste("unweighted UniFrac"), 
             x = -Inf, y = -Inf, hjust = -0.05, vjust = -1, size = 3)  +
     scale_color_manual(values = cols)

PCOAplot

7.2.13 Combined plotting

#pdf(NULL)
g2 <- ggpubr::ggarrange(NMDSplot, PCAplot, RDAplot, PCOAplot,
                        common.legend = TRUE, nrow = 2, ncol = 2, legend = 'top')
#x = dev.off()
g2


7.2.14 Save plots to png and pdf

# either as png or pdf
ggsave("alphadiversity.png", plot = (g1), height=4, width=10, units='in', dpi=600)
ggsave("alphadiversity.pdf", plot = (g1), height=4, width=10, units='in', dpi=600)

ggsave("betadiversity.png", plot = (g2), height=10, width=10, units='in', dpi=600)
ggsave("betadiversity.pdf", plot = (g2), height=10, width=10, units='in', dpi=600)

Note: This code is an amalgamation from various sources. Apart from putting it together into a pipeline I do not take credit for it.

References

Cameron, Ellen S, Philip J Schmidt, Benjamin J-M Tremblay, Monica B Emelko, and Kirsten M Müller. 2021. Enhancing diversity analysis by repeatedly rarefying next generation sequencing data describing microbial communities.” Scientific Reports 11 (1): 1–13.
Gloor, Gregory B., Jean M. Macklaim, Vera Pawlowsky-Glahn, and Juan J. Egozcue. 2017. Microbiome datasets are compositional: And this is not optional.” Frontiers in Microbiology 8 (NOV). https://doi.org/10.3389/fmicb.2017.02224.
McMurdie, Paul J, and Susan Holmes. 2014. Waste not, want not: why rarefying microbiome data is inadmissible.” PLoS Computational Biology 10 (4): e1003531.